№	Задание	Бал	ІЛЫ
	АЛГЕБРА	<u> </u>	
1.	Вычислите: $36^{0,25} \cdot 6^{0,5} - 6$. Решение:	L 0 1 2 3 4 5	L 0 1 2 3 4 5
2.	Покажите, что значение выражения $\frac{\log_7 12 - 2\log_7 2}{\log_{49} \frac{1}{9}}$ есть целое число. Решение:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
3.	Найдите комплексные числа z , для которых $\begin{vmatrix} z & 2 \\ 2i & i \end{vmatrix} = 3 - 2z$, где $i^2 = -1$. $Peшение$:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
	Ответ:		

4.	В некотором классе мальчики составляли 40% от общего количества учеников. После того, как в класс пришли еще 6 мальчиков, количество мальчиков стало равным количеству девочек. Найдите количество девочек в классе. Решение: Ответ:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
5.	Найдите наименьшее целое значение a , при котором одно из решений уравнения $x^2-(2a-6)x+9-6a=0$ принадлежит промежутку $(1;+\infty)$. Решение:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8

	ГЕОМЕТРИЯ		
6.	На рисунке, $AD \parallel BC$, $AD = 20$ см, $BC = 8$ см, а O есть точка пересечения прямых AC и BD . Найдите длину отрезка OC , если известно, что она на C см меньше чем длина отрезка C отрезка	L 0 1 2 3 4 5	L 0 1 2 3 4 5
7.	Осевое сечение прямого кругового конуса есть треугольник со сторонами 13 см, 13 см и 10 см. Найдите объем конуса. Решение:	L 0 1 2 3 4 5	L 0 1 2 3 4 5
8.	В равнобедренной трапеции, угол при большем основании равен 60°, а длина высоты равна 3 см. Найдите площадь трапеции, если известно, что длина её диагонали равна 6 см. Решение:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8

9.	Основанием прямой призмы служит ромб со стороной 5 см и одной диагональю 6 см. Найдите площадь боковой поверхности призмы, если известно, что высота призмы конгруэнтна высоте ромба из основания. Решение:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
	Ответ:		
10.	Φ УНКЦИИ Исследуйте на монотонность функцию $f\colon \mathbb{R} \to \mathbb{R}, \ f(x) = \left(\frac{1}{\sqrt{2}-1}\right)^x$. Решение:	L 0 1 2 3 4 5	L 0 1 2 3 4 5

11.	Даны функции	L 0	L 0
	$f:[0; +\infty) \to \mathbb{R}, \ f(x) = \sqrt{x} + 1, \ g:\mathbb{R} \to \mathbb{R}, \ g(x) = -2x^2 + 8x + 5.$ Найдите пересечение множеств значений $E(f)$ и $E(g)$ функций f и g .	1	1
	Pewenue:	2 3 4 5 6 7 8	2 3 4 5 6 7 8
	Ответ:		
12.	Дана арифметическая прогрессия $(a_n)_{n\geq 1}$, в которой $a_1=102, r=-3$. Найдите сумму положительных членов прогрессии.	L 0	L 0
	Решение: Ответ:	1 2 3 4 5 6 7 8	1 2 3 4 5 6 7 8

	ЭЛЕМЕНТЫ КОМБИНАТОРИКИ, МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ, ФИНАНСОВОГО ИСЧИСЛЕНИЯ И ТЕОРИИ ВЕРОЯТНОСТЕЙ			
13.	В коробке есть 6 красных, 8 жёлтых и 1 зелёная драже. Петру наугад взял из коробки 4 драже. Определите вероятность того, что Петру взял драже всех цветов. Решение: Ответ:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8	
14.	В одном соревновании 10 спортсменов набрали следующие баллы: 100, 80, 50, 60, 80, 90, 50, 70, 50, 110. Спортсмены, чьи результаты выше среднего арифметического и выше медианы соответствующего статистического ряда, допущены в следующий тур. Определите, сколько спортсменов допущено в следующий тур. Решение:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8	

Приложение

$$\log_{a}b - \log_{a}c = \log_{a}\frac{b}{c}, \ a \in \mathbb{R}_{+}^{*} \setminus \{1\}, \ b, c \in \mathbb{R}_{+}^{*}$$

$$\log_{a}b^{c} = c\log_{a}b, \ a \in \mathbb{R}_{+}^{*} \setminus \{1\}, \ b \in \mathbb{R}_{+}^{*}, c \in \mathbb{R}$$

$$\log_{a}c b = \frac{1}{c}\log_{a}b, \ a \in \mathbb{R}_{+}^{*} \setminus \{1\}, \ b \in \mathbb{R}_{+}^{*}, c \neq 0$$

$$\mathcal{A}_{\text{трапеции}} = \frac{1}{2}(a+b)h$$

$$\mathcal{A}_{\text{ромба}} = \frac{1}{2}d_{1}d_{2}$$

$$\mathcal{A}_{\text{параллелограмма}} = ah_{a}$$

$$\mathcal{V}_{\text{конуса}} = \frac{1}{3}\pi R^{2}H$$

$$a_{n} = a_{1} + (n-1)r, \ S_{n} = \frac{a_{1}+a_{n}}{2} \cdot n$$

$$C_{n}^{m} = \frac{n!}{m!(n-m)!}, \quad 0 \leq m \leq n$$