No.	Items	Sco	ore
	ALGEBRA		
1.	Calculate: $\sqrt[3]{16} \cdot 32^{\frac{1}{3}}$. Solution: Answer:	L 0 1 2 3 4 5	L 0 1 2 3 4 5
2.	Determine the absolute value of the complex number Z , such that $zi = (2-i)(1+2i)$, where $i^2 = -1$. Solution:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
3.	Solve in the set $\mathbb{R} \times \mathbb{R} \times \mathbb{R}$ the system of equations $\begin{cases} x_1 + 2x_2 + 3x_3 = 10, \\ 2x_1 - x_2 = 4, \\ x_2 + 3x_3 = 5. \end{cases}$ Solution:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
	Answer:		

5. Determine the real values of a , such that the equation $x^2 - ax + a + 3 = 0$ has two real solutions x_1 and x_2 which satisfy condition $x_1x_2^2 + x_1^2x_2 = 10$. Solution: $ \begin{array}{c} L \\ 0 \\ 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 5 \\ 5 \\ 6 \\ 6 \\ 7 \\ 7 \\ 8 \\ 8 \end{array} $ Answer:	4.	Calculate the value of the expression $7^{\frac{2}{\log_2 7}} + \log_7 196 + 2\log_{\frac{1}{7}} 2$. Solution:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
Answor	5.	Determine the real values of a , such that the equation $x^2 - ax + a + 3 = 0$ has two real solutions x_1 and x_2 which satisfy condition $x_1x_2^2 + x_1^2x_2 = 10$. Solution:	0 1 2 3 4 5 6 7	0 1 2 3 4 5 6 7

	GEOMETRY		
6.	Consider the parallelogram $ABCD$, where AK , $K \in (BC)$, is a bisector of the angle BAD . Determine the measure of the angle AKC , if $m(\angle ABC) = 120^{\circ}$. Solution:	L 0 1 2 3 4 5	L 0 1 2 3 4 5
7.	The volume of a regular quadrilateral prism is equal to 12 cm ³ . Determine the lateral surface area of the prism if it is known that the height is of 3 cm. Solution:	L 0 1 2 3 4 5	L 0 1 2 3 4 5
8.	Answer:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
	Answer:		

9.	In the regular quadrilateral pyramid VABCD, the lateral edge is of 8 cm, and the measure of the angle between edges VD and VB is equal to 120°. Determine the length of the edge of the base of the pyramid. Solution:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
	FUNCTIONS		
10.	Consider the function $f:[0;+\infty)\to\mathbb{R}$, $f(x)=\sqrt{x}-3$. Determine the range $E(f)$ of the function f . Solution:	L 0 1 2 3 4 5	L 0 1 2 3 4 5

11.	Determine the integer values of p , such that the numbers $p+2$, $3p+4$, $p+8$ are the first three terms of a geometric progression. Solution:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
12.	Consider the functions $f:(0;+\infty)\to\mathbb{R}$, $f(x)=\log_2 x$, $g:\mathbb{R}\to\mathbb{R}$, $g(x)=ax^2-(a^2+2a-4)x+5$. Determine the real nonzero values of a , such that at the zero of the function f , the function g has a maximum. Solution:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8

ELEMENTS OF COMBINATORICS, MATHEMATICAL STATISTICS,				
	FINANCIAL CALCULUS AND PROBABILITY THEORY			
13.	In a piggy bank there are 6 coins of 5 lei and 4 coins of 10 lei. Maria get out at random 4 coins from the piggy bank. Determine the probability that with the obtained coins Maria will be able to pay for a ticket of 35 lei. Solution:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8	
	Answer:			
14.	After two consecutive indexations of 20% each, the scholarship of some students increased by 660 lei. Determine the students scholarship after indexations. Solution: Answer:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8	

Annex

$$\begin{split} \log_{a}b + \log_{a}c &= \log_{a}(b \cdot c), \ a \in \mathbb{R}^{*}_{+} \setminus \{1\}, \ b, c \in \mathbb{R}^{*}_{+} \\ \log_{a}b - \log_{a}c &= \log_{a}\frac{b}{c}, \ a \in \mathbb{R}^{*}_{+} \setminus \{1\}, \ b, c \in \mathbb{R}^{*}_{+} \\ \log_{a}b^{c} &= c\log_{a}b, \ a \in \mathbb{R}^{*}_{+} \setminus \{1\}, \ b \in \mathbb{R}^{*}_{+}, c \in \mathbb{R} \\ \log_{a^{c}}b &= \frac{1}{c}\log_{a}b, \ a \in \mathbb{R}^{*}_{+} \setminus \{1\}, \ b \in \mathbb{R}^{*}_{+}, c \in \mathbb{R}^{*} \\ &\frac{1}{\log_{a}b} = \log_{b}a, \ a, b \in \mathbb{R}^{*}_{+} \setminus \{1\} \\ a^{\log_{a}b} &= b, \ a \in \mathbb{R}^{*}_{+} \setminus \{1\}, \ b \in \mathbb{R}^{*}_{+} \\ l_{cirle} &= 2\pi R \\ \mathcal{V}_{prism} &= \mathcal{A}_{b} \cdot H \\ b_{n} &= b_{1}q^{n-1} \\ C_{n}^{m} &= \frac{n!}{m! \ (n-m)!}, \qquad 0 \leq m \leq n \end{split}$$