No.	Items	Sco	ore
	ALGEBRA		
1.	Calculate the value of the expression: $\log_3 36 - 2 \log_3 2$. Solution:	L 0 1 2 3 4 5	L 0 1 2 3 4 5
	Answer:		
2.	Solve in the set \mathbb{R} the equation $\sqrt{4x + 12} = x$. Solution:	L 0 1 2 3 4 5	L 0 1 2 3 4 5
	Answer:	т	T
3.	Consider the matrix $A = \begin{pmatrix} \frac{1}{x-1} & 9 \\ x & x^3(x-1) \end{pmatrix}$. Determine the real values of x , such that the matrix A is invertible. <i>Solution:</i>	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
	Answer:		

Solve in the set \mathbb{R} the inequality $\log_{3-x} 0.25 \le -2$. Solution: L 0 1 2 3 4 5 6 7 8	4.	Consider the expression $E(z) = pz^2 + p^2z + 2 - 6i$. Determine the real values of p , such that $E(1+2i)$ is a real nonzero number. Solution:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
Answer:	5.	Solution:	0 1 2 3 4 5 6 7	L 0 1 2 3 4 5 6 7 8

	GEOMETRY		
6.	On the picture, AM is a tangent line to the circle at the point M , and the point B lies on the circle, so that the center O lies on the line segment AB . Determine the measure in degrees of the angle OAM , if it is known that $AB = 3$ cm and the radius of the circle is 1 cm. Solution:	L 0 1 2 3 4 5	L 0 1 2 3 4 5
	Answer:		
7.	Determine the volume of a regular quadrilateral pyramid with all the edges of 6 cm. Solution: Answer:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8

8.	In a trapezoid, a circle can be inscribed. The small base of the trapezoid is 3 cm and the angle on the larger base is 60°. Determine the length of the radius of the circle circumscribed about the trapezoid. Solution: Answer:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
	ANALIZĂ MATEMATICĂ	I	
9.	Establish the monotonicity of the sequence $(a_n)_{n\geq 1}$, $a_n=\frac{2n}{n+1}$. Solution:	L 0 1 2 3 4 5	L 0 1 2 3 4 5
10.	Consider the function $f:(0; +\infty) \to \mathbb{R}$, $f(x) = 8 \ln x - x^2$.		
	a) Write the equation of the tangent line to the graph of the function f at the point with the abscissa $x_0=1$. Solution:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8

	b) Calculate: $\lim_{x\to 0} \frac{f(x+1)+x^2+2x+1}{2x}$. Solution:	1 2 3 4 5 6 7 8	1 2 3 4 5 6 7 8
	c) Calculate: $\int_{1}^{e} f(x) dx$ Solution: Answer:	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
	ELEMENTS OF COMBINATORICS. NEWTON'S BINOMIAL THEOREM ELEMENTS OF PROBABILITY THEORY AND MATHEMATICAL STATIST		
11.	In a store, sections A, B, C are working. During an hour 7 persons enter the store. Each person can randomly enter one of the sections. Determine the probability that 3 persons enter the section A, 2 persons enter the section B and 2 persons enter the section C. <i>Solution:</i>	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
	Answer:		

12.	Determine the number of rational terms in the binomial expansion $(\sqrt{5} + \sqrt[3]{5})^{100}$.	L 0	L 0
	Solution:	1 2 3	1 2 3
		3 4 5	3 4 5
		6	6
		7 8	7 8
	Answer:		

Annex

$$\begin{split} \log_{a}b - \log_{a}c &= \log_{a}\frac{b}{c}, \ a \in \mathbb{R}^{*}_{+} \setminus \{1\}, \ b, c \in \mathbb{R}^{*}_{+} \\ \log_{a}b^{c} &= c\log_{a}b, \ a \in \mathbb{R}^{*}_{+} \setminus \{1\}, \ b \in \mathbb{R}^{*}_{+}, c \in \mathbb{R} \end{split}$$

$$(x^{\alpha})' &= \alpha \ x^{\alpha-1}, \qquad \alpha \in \mathbb{R}$$

$$(\ln x)' &= \frac{1}{x}$$

$$y &= f(x_{0}) + f'(x_{0})(x - x_{0})$$

$$\int x^{\alpha}dx &= \frac{x^{\alpha+1}}{\alpha+1} + C, \qquad \alpha \in \mathbb{R} \setminus \{-1\}$$

$$\int f(x)g'(x)dx &= f(x)g(x) - \int f'(x)g(x)dx$$

$$\int udv &= uv - \int vdu$$

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} &= 1$$

$$\frac{a}{\sin \alpha} &= \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2R$$

$$V_{pyr.} &= \frac{1}{3}\mathcal{A}_{b} \cdot H$$

$$(a+b)^{n} &= C_{n}^{0}a^{n} + C_{n}^{1}a^{n-1}b + C_{n}^{2}a^{n-2}b^{2} + \dots + C_{n}^{k}a^{n-k}b^{k} + \dots + C_{n}^{n}b^{n}$$

$$T_{k+1} &= C_{n}^{k}a^{n-k}b^{k}, k \in \{0,1,2,\dots,n\}$$

$$C_{n}^{m} &= \frac{n!}{m!(n-m)!}, \qquad 0 \leq m \leq n$$