No.	Item		ore
	I. FOR ITEMS 1-3 PROVIDE SHORT ANSWERS ACCORDING TO THE GIVEN REQUIREMENTS		
1	Complete the following sentences as to make true statements:	L	L
	a) In a uniform circular motion of a mass point the acceleration vector is	0	0
	b) The return force acting on the body of an oscillator is directed towards the	2	2
		4	4
	c) Among the thermodynamic parameters, the internal energy of the ideal gas is a function	6	6
	of the gasd) Of the powers dissipated by the electric current on two resistors connected in series, the	8	8
	power dissipated on the resistor with the resistance is greater.	10	10
	e) When a photon is absorbed by an atom, the energy of the atom		
2	Indicate (by using arrows) the correspondence between the following physical	L	L
	quantities and the physical units they represent:	0	0
	Acceleration K	2	2
	Inductance ka:m/s	4	4
	Radiation frequency mH	6	6
	Absolute temperature 0	8	8
	s ⁻¹	10	10
3	State whether the following statements are true or false and circle the right answer:	L	L
	a) In non-uniform rectilinear motion of a material point the velocity and acceleration	0	0
	b) An isobarically cooled ideal gas has constant internal energy T F	2	2
	c) If wires of constant cross-section used to carry electrical energy are longer, energy	4	4
	losses are smaller. $\mathbf{T} = \mathbf{F}$	6	6
	d) By diffraction, light penetrates the shadow zone of an object which has a size	8	8
	comparable to the wavelength of light. $\mathbf{T} = \mathbf{F}$	10	10
	EXAMPLE 1 In the binding energy of a nucleus depends on its nucleon number. T $\mathbf{F} = \mathbf{T}$ II. IN EXERCISES 4-9 ANSWER THE OUESTIONS OR SOLVE THE TASKS. AND		
	PROVIDE ARGUMENTS IN THE SPACES BELOW:		
4	On a mass point in a gravitational field, a horizontal	L	L
	force F_0 additionally acts. Show on an arbitrary scale	0	0
	the forces acting on the material point, the resultant \vec{p}_0 \vec{q}	1	1
	body is moving rectilinearly uniformly accelerated with	2	2
	initial momentum \vec{p}_0 , oriented as shown in the figure.	3	3
		4	4
5	Determine the maximum kinetic energy of the photoelectron extracted by the 200 nm wavelength radiation from the cathode whose threshold frequency is equal to $1,0 \cdot 10^{15}$ Hz. SOLUTION		
		L	L
		0	0
		1	1
		2	2
		3	3
		4	4
		5	5
		6	6
L			

1	6	Two bodies with masses equal to 1,0 kg and 2,0 kg move in a straight line towards each other. After the plastic collision they continue their motion coupled together. The kinetic energy after the collision is equal to 6,0 J. Determine the initial speed of the first body before the		
		collision, if the second body had a speed of 5,0 m/s and its momentum was less than that of	L	L
		the first body. SOLUTION	0	0
			1	1
			2	2
			3	3
			4	4
			5	5
,	7	A body of mass 4,0 kg, initially at rest at the origin of the Ox axis, is acted upon by a net force parallel to the Ox axis, the projection of which varies with the coordinate of the body, as shown in the figure below. Determine the value of the force when the distance travelled by the		
		body becomes equal to 10 m, if its speed at this point becomes equal to 4,0 m/s.		
		SOLUTION	L	L
			0	0
		F_x , N	1	1
		F	2	2
			3	3
		2 <i>x</i> , m	4	4
			5	5
			6	6
			7	7

8	One mole of a monoatomic ideal gas is heated in isochoric form, so the temperature		
	a) how many times the pressure of the gas has changed;		
	b) the change in the internal energy of the ideal gas if the initial temperature is 200 K.		
	SOLUTION		
		a)	a) I
			L 0
		1	1
		2	2
		3	3
		b)	b)
		L	L
		0	0
		1	1
		2	23
		4	4
		5	5
		6	6
9	In the circuit shown in the figure, the electrical resistances of resistors R_1 , R_2 are equal to 5.0 Ω and 10 Ω . The voltage on the resistor R_2 is equal to 4.0 V. The current from A to B		
	is equal to 1,0 A. Determine the resistance of resistor R_3 .		
	SOLUTION R ₁ R ₂		
	A R_3 R_3	L	L
		0	0
		1	1
		2	2
		3	3
		4	4
		5	5
		6	6
		7	7
		8	8
		9	9

III. FOR ITEMS 10-12 PROVIDE FULL SOLUTION TO THE GIVEN PROBLEMS			
10	In a vertical cylinder, with a movable piston that can move without friction, provided with a heater of electrical resistance $R_0=2,0 \Omega$, connected to a voltage equal to $u = 2,0 V$, there is one mole of Helium. Of the heat energy released by the heater, 70% is transferred to the gas. Determine the temperature change of the gas in $\tau=830$ s after the heater is turned on, if the pressure outside the cylinder is constant and the universal gas constant is $R=8,3$ J/(mol K). SOLUTION		
		-	
		L	L
		0	0
			1
		2	2
		3	3
		4	4
		6	6
		7	7
		8	8
		9	9
		10	10
		11	11
11	A horizontal rod moves downwards without friction on two vertical plane-parallel rails in		
	a homogeneous gravitational and magnetic field of induction 0,5 T, with velocity equal to		
	4,0 m/s, under the action of a force \vec{F} equal to 5,0 N, acting vertically upwards. A resistor with a resistance of 0.5 Q is connected to the ends of the rails. The mass of the rod is 0.55 km	a) 1	a) 1
	The free fall acceleration is 10 m/s^2 . The rod and rails have negligible electrical resistance	1 0	L 0
	and the rod permanently closes the circuit. a) Indicate the direction of the induction current through the	1	1
	rod. b) State the other former entire on the red		
	c) Determine the length of the rod.	b)	b)
		L 0	L 0
	$\begin{vmatrix} & \boldsymbol{\otimes} \\ & \vec{R} \end{vmatrix} \mathbf{\Psi}^{\circ}$	1	1
		2	2

		c) L 0 1 2 3 4 5 6 7 8 9	c) L 0 1 2 3 4 5 6 7 8 9
12	You have a spring with known spring constant, which can be both stretched and compressed, fixed at one end to a support, tennis ball with known mass, tennis ball launcher, ruler. A device is attached to the end of the spring to record the deformation of the spring. The device and the spring have negligible mass. You need to determine the speed at which the tennis ball is launched from the launcher. Requirements: a) describe how to determine the speed; b) derive the formula for the calculation. SOLUTION	a) L 0 1 b) L 0 1 2 3 4 5 6	a) L 0 1 b) L 0 1 2 3 4 5 6

ANNEX Physical constants

Elementary charge $e = 1,60 \cdot 10^{-19}$ C	Avogadro's constant $N_A = 6,02 \cdot 10^{23} \text{ mol}^{-1}$		
Electron rest mass $m_e = 9,11 \cdot 10^{-31} \text{ kg}$	Boltzmann's constant $k = 1,38 \cdot 10^{-23} \text{ J/K}$		
Light speed in vacuum $c = 3,00 \cdot 10^8 \text{ m/s}$	Ideal gas constant $R = 8,31 \text{ J/(mol} \cdot \text{K})$		
Gravitational constant $K = 6,67 \cdot 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$	Planck's constant $h = 6,63 \cdot 10^{-34} \text{ J} \cdot \text{s}$		
Electric constant $\varepsilon_0 = 8,85 \cdot 10^{-12} \text{ F/m}$	Coulomb's force constant $k_e = 9,00 \cdot 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$		
MECH	ANICS		
$x = x_0 + v_{0x}t ; \ x = x_0 + v_{0x}t + \frac{a_x t^2}{2} ; \ v_x = v_{0x} + a_xt ; \ v_x^2 - v_{0x}^2$	$= 2a_{x}s_{x}; v = \frac{1}{T}; \omega = \frac{2\pi}{T}; v = \omega r; \omega = 2\pi v; a_{c} = \frac{v^{2}}{r}.$		
$\vec{F} = m\vec{a}$; $\vec{F}_{12} = -\vec{F}_{21}$; $F = K \frac{m_1 m_2}{r^2}$; $\vec{F}_e = -k\Delta \vec{l}$; F_f	$F_{A} = \mu N$; $F_{A} = \rho_{0} Vg$; $p = \frac{F}{S}$; $p = \rho gh$; $M = Fd$.		
$\vec{p} = m\vec{v}$; $\Delta \vec{p} = \vec{F} \Delta t$; $L_{mec.} = Fs \cos \alpha$; $P = \frac{L}{t}$; $E_c = \frac{mv^2}{2}$;	$L_{12} = E_{c2} - E_{c1}; E_p = mgh; E_p = \frac{kx^2}{2}; L_{12} = -(E_{p2} - E_{p1});$		
$x = A\sin\left(\omega t + \varphi_0\right); \ T = 2\pi \sqrt{\frac{l}{g}}; \ T = 2\pi \sqrt{\frac{m}{k}}; \ \lambda = \upsilon T;$			
MOLECULAR PHYSICS A	ND THERMODYNAMICS		
$p = \frac{1}{3}m_0n\overline{v^2} = \frac{2}{3}n\overline{\varepsilon}_{tr.}; \ \overline{\varepsilon}_{tr.} = \frac{3}{2}kT; \ p = nkT; \ v_T = \sqrt{\frac{3RT}{M}}; \ pV = vRT; \ v = \frac{m}{M} = \frac{N}{N_A}; \ R = kN_A; \ M = m_0N_A;$			
$pV = const.$, $T = const.$; $\frac{p}{T} = const.$, $V = const.$;	$\frac{V}{T} = const.$, $p = const.$; $\frac{pV}{T} = const.$, $m = const.$		
$U = \frac{3}{2} \frac{m}{M} RT; \ L = p\Delta V; \ Q = cm\Delta T; \ Q = C_M v\Delta T; \ c_p - c_V = \frac{R}{M}; \ Q_V = \lambda_V m; \ Q = qm; \ Q = \Delta U + L; \ \eta = \frac{Q_1 - Q_2 }{Q_1};$			
$\eta_{\max} = \frac{T_1 - T_2}{T_1}; \ \varphi = \frac{\rho_a}{\rho_s} = \frac{p_a}{p_s}; \ \sigma = \frac{F_s}{l};$	$h = \frac{4\sigma}{\rho g d}; \frac{F}{S} = E \frac{\Delta l}{l}; l = l_0 (1 + \alpha t);$		
ELECTROD	VYNAMICS		
$F = \frac{k_e}{\varepsilon_r} \frac{ q_1 q_2 }{r^2}; E = \frac{k_e}{\varepsilon_r} \frac{ q }{r^2}; k_e = \frac{1}{4\pi\varepsilon_0}; \vec{E} = \frac{\vec{F}}{q_0}; E = \frac{U}{d}; \varphi = \frac{W}{q_0}; \varphi = \frac{kq}{r}; U = \frac{L}{q_0};$			
$C = rac{q}{U}$; $C = rac{\mathcal{E}_0 \mathcal{E}_r S}{d}$; $C_p = \sum_{i=1}^n$	$C_i; \frac{1}{C_s} = \sum_{i=1}^n \frac{1}{C_i}; W_e = \frac{CU^2}{2}$		
$I = \frac{\Delta q}{\Delta t}; I = \frac{U}{R}; I = \frac{\varepsilon}{R+r}; I_{s.c.} = \frac{\varepsilon}{r}; R = \rho \frac{l}{S}; R_s = \sum_{i=1}^{n} I$	$R_i; \frac{1}{R_p} = \sum_{i=1}^n \frac{1}{R_i}; L = IUt; Q = I^2 Rt; P = IU; \eta = \frac{L_u}{L_t};$		
$F_m = IBl\sin\alpha ;$	$F_L = qvB\sin\alpha ;$		
$\Phi = BS \cos \alpha \ ; \ \varepsilon_i = -\frac{\Delta \Phi}{\Delta t} \ ; \ \Phi = Li; \ \varepsilon_{ai} = -L\frac{\Delta i}{\Delta t} \ ; \ W_m = \frac{LI^2}{2} \ ; \ q = q_m \cos\left(\omega t + \varphi_0\right) \ ; I = \frac{I_m}{\sqrt{2}} \ ; \ U = \frac{U_m}{\sqrt{2}} \ ; \ U = $			
$\frac{I_2}{I_1} \approx K = \frac{N_1}{N_2} = \frac{U_1}{U_2}; \ X_C = \frac{1}{\omega C}; \ X_L = \omega L; \ T = 2\pi\sqrt{LC};$			
$\Delta_{\max} = \pm 2m \cdot \frac{\lambda}{2} ; \ \Delta_{\min} = \pm (2m+1) \cdot \frac{\lambda}{2} ; \ d\sin\varphi = \pm m\lambda ; \ d = \frac{l}{N} = \frac{1}{n}$			
MODERN PHYSICS			
$\tau = \frac{\tau_0}{\sqrt{1 - v^2/c^2}}; \ l = l_0 \sqrt{1 - v^2/c^2}; \ m = \frac{m_0}{\sqrt{1 - v^2/c^2}}; \ \vec{p} = \frac{m_0 \vec{v}}{\sqrt{1 - v^2/c^2}} = \frac{E}{c^2} \vec{v}; \ E = mc^2; \ E_c = (m - m_0)c^2;$			
$\varepsilon_{ph} = \frac{hc}{\lambda}; \ p_{ph} = \frac{h}{\lambda}; \ hv = L_e + \frac{mv_{max}^2}{2}; \ v = \frac{c}{\lambda}; \ hv = E_n - E_m; \\ N = N_0 e^{-\lambda t}; \ \lambda = \frac{\ln 2}{T_{1/2}}; \ N = N_0 2^{-\frac{t}{T_{1/2}}}; $			
${}^{A}_{Z}X \rightarrow {}^{A-4}_{Z-2}Y + {}^{4}_{2}He \; ; {}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}Y + {}^{0}_{-1}e \; ; \; 1 \text{ eV} = 1,60 \cdot 10^{-19} \text{ J} \; ; \; 1 \text{ u} = 1,66 \cdot 10^{-27} \text{ kg} \; .$			