No.	Item		
I. FOR ITEMS 1-3 PROVIDE SHORT ANSWERS ACCORDING TO THE GIVENREQUIREMENTS			
1	Complete the following sentences as to make true statements: a) In a uniform circular motion of a mass point the acceleration vector is .to its velocity. b) The return force acting on the body of an oscillator is directed towards the position of the body. c) Among the thermodynamic parameters, the internal energy of the ideal gas is a function of the gas. d) Of the powers dissipated by the electric current on two resistors connected in series, the power dissipated on the resistor with the \qquad resistance is greater. e) When a photon is absorbed by an atom, the energy of the atom	L 0 2 4 6 8 10	L 0 2 4 6 8 10
2	Indicate (by using arrows) the correspondence between the following physical quantities and the physical units they represent:	L 0 2 4 6 8 10	L 0 2 4 6 8 10
3	State whether the following statements are true or false and circle the right answer: a) In non-uniform rectilinear motion of a material point the velocity and acceleration vectors are parallel. b) An isobarically cooled ideal gas has constant internal energy. c) If wires of constant cross-section used to carry electrical energy are longer, energy losses are smaller. d) By diffraction, light penetrates the shadow zone of an object which has a size comparable to the wavelength of light. e) The binding energy of a nucleus depends on its nucleon number.	L 0 2 4 6 8 10	L 0 2 4 6 8 10
II. IN EXERCISES 4-9 ANSWER THE QUESTIONS OR SOLVE THE TASKS, AND PROVIDE ARGUMENTS IN THE SPACES BELOW:			
4	On a mass point in a gravitational field, a horizontal force \vec{F}_{0} additionally acts. Show on an arbitrary scale the forces acting on the material point, the resultant force \vec{F} and the acceleration vector of the body if the body is moving rectilinearly uniformly accelerated with initial momentum \vec{p}_{0}, oriented as shown in the figure.	L 0 1 1 2 3 4	L 0 1 2 3 4
5	Determine the maximum kinetic energy of the photoelectron extracted by the 200 nm wavelength radiation from the cathode whose threshold frequency is equal to $1,0 \cdot 10^{15} \mathrm{~Hz}$. SOLUTION	L 0 1 2 3 4 4 5 6	L 0 1 2 3 4 5 6

| 6 | Two bodies with masses equal to 1,0 kg and 2,0 kg move in a straight line towards each other.
 After the plastic collision they continue their motion coupled together. The kinetic energy
 after the collision is equal to $6,0 \mathrm{~J}$. Determine the initial speed of the first body before the
 collision, if the second body had a speed of $5,0 \mathrm{~m} / \mathrm{s}$ and its momentum was less than that of
 the first body.
 SOLUTION | L | |
| :--- | :--- | :--- | :--- | :--- |

| 8 | |
| :--- | :--- | :--- | :--- |
| One mole of a monoatomic ideal gas is heated in isochoric form, so the temperature
 increases twofold. Determine:
 a) how many times the pressure of the gas has changed;
 b) the change in the internal energy of the ideal gas if the initial temperature is 200 K.
 SOLUTION | |

III. FOR ITEMS 10-12 PROVIDE FULL SOLUTION TO THE GIVEN PROBLEMS

10 In a vertical cylinder, with a movable piston that can move without friction, provided with a heater of electrical resistance $R_{0}=2,0 \Omega$, connected to a voltage equal to $u=2,0 \mathrm{~V}$, there is one mole of Helium. Of the heat energy released by the heater, 70% is transferred to the gas. Determine the temperature change of the gas in $\tau=830 \mathrm{~s}$ after the heater is turned on, if the pressure outside the cylinder is constant and the universal gas constant is $R=8,3 \mathrm{~J} /(\mathrm{mol} \mathrm{K})$.
SOLUTION

11 A horizontal rod moves downwards without friction on two vertical, plane-parallel rails in a homogeneous gravitational and magnetic field of induction $0,5 \mathrm{~T}$, with velocity equal to $4,0 \mathrm{~m} / \mathrm{s}$, under the action of a force \vec{F} equal to $5,0 \mathrm{~N}$, acting vertically upwards. A resistor
a) a) with a resistance of $0,5 \Omega$ is connected to the ends of the rails. The mass of the rod is $0,55 \mathrm{~kg}$. The free fall acceleration is $10 \mathrm{~m} / \mathrm{s}^{2}$. The rod and rails have negligible electrical resistance and the rod permanently closes the circuit.
a) Indicate the direction of the induction current through the rod.
b) State the other forces acting on the rod.
c) Determine the length of the rod.

SOLUTION

		$\begin{aligned} & \text { c) } \\ & \mathrm{L} \\ & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	c) L 0 1 2 3 4 5 6 7 7 8 9
12	You have a spring with known spring constant, which can be both stretched and compressed, fixed at one end to a support, tennis ball with known mass, tennis ball launcher, ruler. A device is attached to the end of the spring to record the deformation of the spring. The device and the spring have negligible mass. You need to determine the speed at which the tennis ball is launched from the launcher. Requirements: a) describe how to determine the speed; b) derive the formula for the calculation. SOLUTION	$\begin{aligned} & \text { a) } \\ & \text { L } \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { a) } \\ & \mathrm{L} \\ & 0 \\ & 1 \end{aligned}$
		$\begin{aligned} & \text { b) } \\ & \text { L } \\ & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & \text { b) } \\ & \mathrm{L} \\ & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$

Elementary charge $e=1,60 \cdot 10^{-19} \mathrm{C}$
Electron rest mass $m_{e}=9,11 \cdot 10^{-31} \mathrm{~kg}$
Light speed in vacuum $c=3,00 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$
Gravitational constant $K=6,67 \cdot 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$
Electric constant $\varepsilon_{0}=8,85 \cdot 10^{-12} \mathrm{~F} / \mathrm{m}$

Avogadro's constant $N_{A}=6,02 \cdot 10^{23} \mathrm{~mol}^{-1}$
Boltzmann's constant $k=1,38 \cdot 10^{-23} \mathrm{~J} / \mathrm{K}$
Ideal gas constant $R=8,31 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$
Planck's constant $h=6,63 \cdot 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
Coulomb's force constant $k_{e}=9,00 \cdot 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$

MECHANICS

$$
\begin{gathered}
x=x_{0}+v_{0 x} t ; x=x_{0}+v_{0 x} t+\frac{a_{x} t^{2}}{2} ; v_{x}=v_{0 x x}+a_{x} t ; v_{x}^{2}-v_{0 x}^{2}=2 a_{x} s_{x} ; v=\frac{1}{T} ; \omega=\frac{2 \pi}{T} ; v=\omega r ; \omega=2 \pi v ; a_{c}=\frac{v^{2}}{r} . \\
\vec{F}=m \vec{a} ; \vec{F}_{12}=-\vec{F}_{21} ; F=K \frac{m_{1} m_{2}}{r^{2}} ; \vec{F}_{e}=-k \Delta \vec{l} ; F_{f}=\mu N ; F_{A}=\rho_{0} V g ; p=\frac{F}{S} ; p=\rho g h ; M=F d . \\
\vec{p}=m \vec{v} ; \Delta \vec{p}=\vec{F} \Delta t ; L_{m e c .}=F s \cos \alpha ; P=\frac{L}{t} ; E_{c}=\frac{m v^{2}}{2} ; L_{12}=E_{c 2}-E_{c 1} ; E_{p}=m g h ; E_{p}=\frac{k x^{2}}{2} ; L_{12}=-\left(E_{p 2}-E_{p 1}\right) ; \\
x=A \sin \left(\omega t+\varphi_{0}\right) ; T=2 \pi \sqrt{\frac{l}{g}} ; T=2 \pi \sqrt{\frac{m}{k}} ; \lambda=v T ;
\end{gathered}
$$

MOLECULAR PHYSICS AND THERMODYNAMICS

$$
\begin{gathered}
p=\frac{1}{3} m_{0} n \overline{v^{2}}=\frac{2}{3} n \bar{\varepsilon}_{t r .} ; \bar{\varepsilon}_{\text {tr. }}=\frac{3}{2} k T ; p=n k T ; v_{T}=\sqrt{\frac{3 R T}{M}} ; p V=v R T ; v=\frac{m}{M}=\frac{N}{N_{A}} ; R=k N_{A} ; M=m_{0} N_{A} ; \\
p V=\text { const. }, T=\text { const. } ; \frac{p}{T}=\text { const. }, V=\text { const. } ; \frac{V}{T}=\text { const. }, p=\text { const. } ; \frac{p V}{T}=\text { const. }, m=\text { const. } \\
U=\frac{3}{2} \frac{m}{M} R T ; L=p \Delta V ; Q=c m \Delta T ; Q=C_{M} v \Delta T ; c_{p}-c_{V}=\frac{R}{M} ; Q_{V}=\lambda_{V} m ; Q=q m ; Q=\Delta U+L ; \eta=\frac{Q_{1}-\left|Q_{2}\right|}{Q_{1}} ; \\
\eta_{\max .}=\frac{T_{1}-T_{2}}{T_{1}} ; \varphi=\frac{\rho_{a}}{\rho_{s}}=\frac{p_{a}}{p_{s}} ; \sigma=\frac{F_{s}}{l} ; h=\frac{4 \sigma}{\rho g d} ; \frac{F}{S}=E \frac{\Delta l}{l} ; l=l_{0}(1+\alpha t) ;
\end{gathered}
$$

ELECTRODYNAMICS

$$
\begin{gathered}
F=\frac{k_{e}}{\varepsilon_{r}} \frac{\left|q_{1} q_{2}\right|}{r^{2}} ; E=\frac{k_{e}}{\varepsilon_{r}} \frac{|q|}{r^{2}} ; k_{e}=\frac{1}{4 \pi \varepsilon_{0}} ; \vec{E}=\frac{\vec{F}}{q_{0}} ; E=\frac{U}{d} ; \varphi=\frac{W}{q_{0}} ; \varphi=\frac{k q}{r} ; U=\frac{L}{q_{0}} ; \\
C=\frac{q}{U} ; C=\frac{\varepsilon_{0} \varepsilon_{r} S}{d} ; C_{P}=\sum_{i=1}^{n} C_{i} ; \frac{1}{C}=\sum_{i=1}^{n} \frac{1}{C_{i}} ; W_{e}=\frac{C U^{2}}{2} \\
I=\frac{\Delta q}{\Delta t} ; I=\frac{U}{R} ; I=\frac{\varepsilon}{R+r} ; I_{s . c .}=\frac{\varepsilon}{r} ; R=\rho \frac{l}{S} ; R_{s}=\sum_{i=1}^{n} R_{i} ; \frac{1}{R_{p}}=\sum_{i=1}^{n} \frac{1}{R_{i}} ; L=I U t ; Q=I^{2} R t ; P=I U ; \eta=\frac{L_{u}}{L_{t}} ; \\
F_{m}=I B l \sin \alpha ; F_{L}=q v B \sin \alpha ; \\
\Phi=B S \cos \alpha ; \varepsilon_{i}=-\frac{\Delta \Phi}{\Delta t} ; \Phi=L i ; \varepsilon_{a i}=-L \frac{\Delta i}{\Delta t} ; W_{m}=\frac{L I^{2}}{2} ; q=q_{m} \cos \left(\omega t+\varphi_{0}\right) ; I=\frac{I_{m}}{\sqrt{2}} ; U=\frac{U_{m}}{\sqrt{2}} ; \\
\frac{I_{2}}{I_{1}} \approx K=\frac{N_{1}}{N_{2}}=\frac{U_{1}}{U_{2}} ; X_{C}=\frac{1}{\omega C} ; X_{L}=\omega L ; T=2 \pi \sqrt{L C} ; \\
\Delta_{\max }= \pm 2 m \cdot \frac{\lambda}{2} ; \Delta_{\min }= \pm(2 m+1) \cdot \frac{\lambda}{2} ; d \sin \varphi= \pm m \lambda ; d=\frac{l}{N}=\frac{1}{n}
\end{gathered}
$$

MODERN PHYSICS

$$
\begin{gathered}
\tau=\frac{\tau_{0}}{\sqrt{1-v^{2} / c^{2}}} ; l=l_{0} \sqrt{1-v^{2} / c^{2}} ; m=\frac{m_{0}}{\sqrt{1-v^{2} / c^{2}}} ; \vec{p}=\frac{m_{0} \vec{v}}{\sqrt{1-v^{2} / c^{2}}}=\frac{E}{c^{2}} \vec{v} ; \quad E=m c^{2} ; E_{c}=\left(m-m_{0}\right) c^{2} ; \\
\varepsilon_{p h}=\frac{h c}{\lambda} ; p_{p h}=\frac{h}{\lambda} ; h \nu=L_{e}+\frac{m v_{\max }^{2}}{2} ; v=\frac{c}{\lambda} ; h v=E_{n}-E_{m} ; N=N_{0} e^{-\lambda t} ; \quad \lambda=\frac{\ln 2}{T_{1 / 2}} ; N=N_{0} 2^{-\frac{t}{T_{1 / 2}}} \\
{ }_{Z}^{A} X \rightarrow{ }_{Z-2}^{A-4} Y+{ }_{2}^{4} H e ;{ }_{Z}^{A} X \rightarrow{ }_{Z+1}^{A} Y+{ }_{-1}^{0} e ; 1 \mathrm{eV}=1,60 \cdot 10^{-19} \mathrm{~J} ; 1 \mathrm{u}=1,66 \cdot 10^{-27} \mathrm{~kg} .
\end{gathered}
$$

