№	Задания												
		1	2										
1	Плоды облепихи обладают противовирусным действием, поскольку они чрезвычайно богаты витаминами, минералами и активными веществами. В их состав входят следующие химические элементы: <i>Fe, P, Mg, C</i> . Дополни свободные пространства в следующих предложениях: а) Для железа: Находится в IV периоде, группе, подгруппе, содержит	L 0 1 2 3	L 0 1 2 3										
	в ядре	4 5 6 7 8 9 10 11	4 5 6 7 8 9 10 11										
2	которое называется	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8										
3	Применение хлорида цинка в качестве электролита в батарейках позволяет увеличить срок их службы и обеспечить более высокую мощность. І. Дополни свободные пространства таблицы для веществ, применяемых для получения хлорида цинка: Класс соединений Химическая формула Название вещества В ДПО НСІ ІІ. Используя формулы химических веществ из таблицы, напиши уравнения реакций получения хлорида цинка. 1) ZnO + HCl → +	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8										

4	 Гидроксид кальция используют в качестве регулятора кислотности при производстве сухих сливок, пищевых молочных смесей для детского питания. Его получают по реакции: СаО + H₂O = Ca(OH)₂ + Q I. Охарактеризуй данную реакцию (укажи ее тип) по трем критериям: а)		L 0 1 2 3 4 5 6 7
	a) Ca(OH) ₂ + Na ₃ PO ₄ → + б) Ca(OH) ₂ + CO ₂ → +		
5	Изменить окраску цветов можно различными способами. Чтобы гортензия посинела, ее поливают раствором сульфата алюминия. Реши задачу. Вычисли массу сульфата алюминия, полученного при взаимодействии алюминия массой 5,4 г с раствором серной кислоты, если реакция протекает по схеме: $Al + H_2SO_4 \rightarrow Al_2(SO_4)_3 + H_2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	L 0 1 2 3 4 5	L 0 1 2 3 4 5 6
	Дано: Решение:	7 8	7 8

6	В отведенных пространствах следующих выражений напиши букву B , если считаешь выражение верным, и букву H , если считаешь неверным. 1. Вещество NH ₃ хорошо растворяется в воде (). 2. Электролиты — это вещества, которые в растворе или в расплаве проводят электрический ток (). 3. В растворах щелочей рН <7 (). 4. В ряду элементов Li-Na-K металлические свойства ослабевают (). 5. Водород в промышленности получают при разложении метана (). 6. Объем, который занимают три моль оксида серы (IV), равен 44,8 л (н. у.) (). 7. В 40 г раствора с массовой долей 20 % содержится 8 г растворенного вещества ().	L 0 1 2 3 4 5 6 7	L 0 1 2 3 4 5 6 7
7	Наночастицы <i>сульфида меди (II)</i> применяют в устройствах оптоэлектроники, солнечных батареях и в биомедицине. I. Используя таблицу растворимости, напиши в отведенном пространстве химические формулы и уравнения диссоциации двух растворимых солей, при взаимодействии которых образуется <i>сульфид меди (II)</i> . <i>Формула растворимой соли, Уравнение диссоциации содержащей</i> ион Cu²+	L 0 1 2 3 4 5 6 7 8 9	L 0 1 2 3 4 5 6 7 8 9
8	Дополни свободные пространства предложений. 1. Вещество <i>С₆H₅-OH</i> называется	1 2	L 0 1 2 3 4 5 6 7 8

№ Структурная полуразвернутая формула вещества Название вещества Класс органических веществ По от органических веществ От органическа веществ От органическа веществ От органическа	І. Д	ополни свободные пространства	таблицы:			
1. CH3-CH2-CH-CH3 2 3 4 5 6 7 8 9 10 8 9 10 8 9 10 <	No	полуразвернутая формула	Название вещества	органических	1	1 0
2. альдегиды 6 7 8 9 10 3. альдегиды 6 7 8 9 10 III. Для вещества 1 напиши структурную полуразвернутую формулу и название одного изомера: (формула) (мазвание) ИІІ. Для вещества 2 напиши структурную полуразвернутую формулу и название одного гомолога: (формула) (мазвание) Формиат кальция применяют в качестве добавки в строительные растворы и все виды бетонов, чтобы ускорить схватывание цемента, особенно при строительстве в зимний период. Реши задачу. Вычисли массу формиата кальция, полученного при взаимодействии муравьиной кислоты и карбоната кальция, если в результате реакции выделился оксид углерода (IV) объемом 2,24 л (н.у.). Реакция протекает по схеме: НСООН + СаСО3 → (НСОО)2Са + СО2↑ + Н2О (не забудь уравнять!) 3 4 5 6 7	1.	CH ₃ -CH ₂ -CH-CH ₃		,	3 4	3 4
3. III. Для вещества 1 напиши структурную полуразвернутую формулу и название одного изомера: (формула) (название) III. Для вещества 2 напиши структурную полуразвернутую формулу и название одного гомолога: (формула) (мазвание) (формула) (мазвание)	2.		пент-2-ин		6	5
одного <i>изомера</i> : ———————————————————————————————————	3.			альдегиды	9	1
Формиат кальция применяют в качестве добавки в строительные растворы и все виды бетонов, чтобы ускорить схватывание цемента, особенно при строительстве в зимний период. Реши задачу. Вычисли массу формиата кальция, полученного при взаимодействии муравьиной кислоты и карбоната кальция, если в результате реакции выделился оксид углерода (IV) объемом 2,24 л (н.у.). Реакция протекает по схеме: HCOOH + CaCO ₃ → (HCOO) ₂ Ca + CO ₂ ↑ + H ₂ O (не забудь уравнять!) 1	III.	одного <i>изомера:</i>	(назван	rue)		
виды бетонов, чтобы ускорить схватывание цемента, особенно при строительстве в зимний период. Реши задачу. Вычисли массу формиата кальция, полученного при взаимодействии муравьиной кислоты и карбоната кальция, если в результате реакции выделился оксид углерода (IV) объемом 2,24 л (н.у.). Реакция протекает по схеме:			(назван	nue)		
Дано: Решение:	видн зимп Реш мура окси	ы бетонов, чтобы ускорить схватний период. и задачу. Вычисли массу формавьиной кислоты и карбоната в ид углерода (IV) объемом 2,24 л (гывание цемента, особенно и и ата кальция, полученного кальция, если в результате (н.у.). Реакция протекает по	при строительстве в при взаимодействии е реакции выделился о схеме:	0 1 2 3 4 5 6	
	Д —	Гано: Р	ешение:			
	_					
	_					
	_					

11	 Напиши уравнения реакций для следующих схем: 1) CH₃-CH₂-CH₃ → CH₂=CH-CH₃ 2) C₆H₁₂O₆ → C₂H₅OH 3) CH=CH → CH₃-CH=O 4) C₆H₆ → C₆H₅Cl 	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
12	I. Слева от порядковых номеров веществ в колонке A напиши букву, соответствующую области применения из колонки Б: A Б 1. этен а) получение синтетического каучука 2. метан б) в качестве ароматизатора 3. метилэтаноат в) в качестве топлива 4. бута-1,3-диен г) консервант в пищевой промышленности 5. этановая кислота д) получение полиэтилена II. Одно из предложенных веществ охарактеризуй по плану: а) химическая формула б) одно физическое свойство в) уравнение реакции, иллюстрирующее одно химическое свойство:	L 0 1 2 3 4 5 6 7 8 9	L 0 1 2 3 4 5 6 7 8 9

ПЕРИОДИЧЕСКАЯ СИСТЕМА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ

		121 110 2	I III CITI	T CIICI	2311212122			MILITIOD		
Группы Периоды	I	II	III	IV	V	VI	VII		VIII	
1	1 водород Н 1,0079							2 гелий He 4,0026		
2	3 литий Li 6,941	4 бериллий Be 9,01218	5 бор В 10,81	6 углерод С 12,011	7 азот N 14.0067	8 кислород О 15,9994	9 фтор F 18,9984	10 неон Ne 20,179		
3	11 натрий Na 22,98977	12 магний Mg 24,305	13 алюминий Al 26,98154	14 кремний Si 28,0855	15 фосфор Р 30,97376	16 cepa	17 хлор Cl 35,453	18 аргон Ar 39,948		
	19 калий К 39,0983	20 кальций Са 40,08	21 скандий 44,9559 Sc	22 титан 47,88 Ті	23 ванадий 50,9415 V	24 хром 51,996 Сг	25 марганец 54,938 Мп	26 железо 27 55,847 Fe 58,93	кобальт 23 332 Со 53	8 никель 8,69 Ni
4	29 медь 63,546 Cu	30 цинк 65,38 Zn	31 галлий Ga 69,72	32 германий Ge 72,59	33 мышьяк As 74,9216	34 селен Se 78,96	35 бром Br 79,904	36 криптон Kr 83,80		
5	37 рубидий Rb 85,4678 47 серебро	38 стронций Sr 87,62 48 кадмий	39 иттрий 88,9059 Y 49 индий	40 цирконий 91,22 Zr 50 олово	· /· · · · · · · · · · · · · · · · · ·	42 молибден 95,94 Мо 52 теллур	43 технеций [98] Тс 53 иод	44 рутений 45 101,07 Ru 102,9 54 ксенон		6 палладий 06,42 Pd
	107,868 Ag 55 цезий	112,41 Cd 56 барий	In 114,82 57* лантан	Sn 118,69		Te 127,60	I 126,9045	Xe 131,29	иридий 73	8 платина
6	Cs 132,9054	Ва 137,33	138,9055 La 81 таллий	178,49 Hf 82 свинен	180,948 Ta	183,85 W 84 полоний	186,207 Re	190,2 Os 192,	* '-	95,08 Pt
	196,9665 Au	200,59 Hg	Tl 204,383	Pb 207,2	Bi 208,980	Po [209]	At [210]	Rn [222]		
7	' -		89** актиний 227,028 Ас	104 резерфордий [261] Rf	105 дубний [262] Db	106 сиборгий [263] Sg	107 борий [262] Bh		гнерий д	10 _{(армштадтий} 281] Ds
	Fr [223]	Ra 226,025	221,028 AC		<u> </u>		[202] DII	[207,13] 113 [108	,14j 1 VIL [2	201] DS
	59 Pr 60 неод 140,9077 144,	им прометий			Gd 65 олиний терб 57,25 158,9			68 Er 69 Tm эрбий тулий 167,26 168,9342	70 Үb иттербий 173,04	71 Lu лютеций 174.967

58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu		
церий	празеодим	неодим	прометий	самарий	европий	гадолиний	тербий	диспрозий	гольмий	эрбий	тулий	иттербий	лютеций		
140,12	140,9077	144,24	[145]	150,36	151,96	157,25	158,9254	162,50	164,9304	167,26	168,9342	173,04	174.967		

**Актиноиды

90	Th	91	Pa	92	U	93	Np	94	Pu	95	Am	96 Cm	97	Bk	98	Cf	99 F	Es	100 Fm	101	Md	102	No	103	Lr
T	орий	протак	тиний	уран	I	непт	уний	плуто	ний	амер	оиций	кюрий	бер	кли	калис	pop-	эйнштей	Í-	фермий	мен	деле-	нобел	ий	лоурег	нсий
23	2,0381	231,0)359	238,03	889	237,0	0482	[24	4]	[2	43]	[247]	й[247]	ний [251]	ний [252	2]	[257]	вий	[258]	[255	5]	[26	0]

		PAC	ГВО	РИМ	OC7	ГЬ В 1	воде	КИС	лот,	, OCI	HOBA	ний	ИС	ЭЛЕЙ	Í		
	H^+	NH ₄ ⁺	Li ⁺	Na ⁺	K ⁺	Ba ²⁺	Ca ²⁺	Mg^{2+}	Al ³⁺	Cr ³⁺	Zn ²⁺	Mn ²⁺	Fe ²⁺	Fe ³⁺	Pb ²⁺	Cu ²⁺	Ag ⁺
OH -		P↑	P	P	P	P	M	Н	Н	Н	Н	Н	Н	Н	Н	Н	-
F -	P	P	M	P	P	M	Н	Н	M	Н	P	P	Н	Н	Н	P	P
Cl -	P	P	P	P	P	P	P	P	P	P	P	P	P	P	M	P	Н
Br-	P	P	P	P	P	P	P	P	P	P	P	P	P	P	M	P	Н
I -	P	P	P	P	P	P	P	P	P	P	P	P	P	-	Н	-	Н
S ²⁻	P↑	P	P	P	P	P	P	P	-	-	Н	Н	Н	-	Н	Н	Н
SO ₃ ²⁻	P↑	P	P	P	P	Н	Н	Н	-	-	Н	-	Н	-	Н	Н	Н
SO ₄ ²⁻	P	P	P	P	P	Н	M	P	P	P	P	P	P	P	Н	P	M
CO ₃ ²⁻	P↑	P	P	P	P	Н	Н	Н	-	-	Н	Н	Н	-	Н	-	Н
SiO ₃ ² -	Н	-	P	P	P	Н	Н	Н	-	-	Н	Н	Н	-	Н	-	-
NO ₃ -	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
PO ₄ ³⁻	P	P	Н	P	P	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
CH ₃ COO	P	P	P	P	P	P	P	P	P	-	P	P	P	-	P	P	P

Примечание: P – растворимое вещество, M – малорастворимое, H – практически нерастворимое; «-» - вещество не существует или разлагается водой; ↑ - вещество выделяется в виде газа или распадается с выделением газа

РЯД ЭЛЕКТРООТРИЦАТЕЛЬНОСТИ

F	О	N	Cl	Br	I	S	C	Se	P	Н	As	В	Si	Al	Mg	Ca	Li	Na	K
4,0	3,5	3,07	3,0	2,8	2,5	2,5	2,5	2,4	2,1	2,1	2,0	2,0	1,8	1,5	1,2	1,04	1,0	0,9	0,8

РЯД НАПРЯЖЕНИЙ МЕТАЛЛОВ

Li K Ba Ca Na Mg Al Mn Zn Cr Fe Ni Sn Pb (H) Cu Hg Ag Pt Au