No.	Items	Score										
1	Circle the letter T , if the statement is true and the letter F , if it is false.											
	 T F The number of protons in the nucleus of the bromine atom is equal to the number of neutrons which are contained in the nucleus of the atom ⁶⁴Cu. T F The chemical element with the electronic configuration 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p in the higher oxide has the oxidation degree +4. 	$ \begin{array}{c cccc} & L & L & \\ \hline & 0 & 0 & \\ \hline & 1 & 1 & \\ \hline & 2 & 2 & \\ \hline & 3 & 3 & \\ \end{array} $										
	 3) T F The most active metal of the 4th period is a strongest reducing agent than the chemical element with an atomic number 37. 4) T F The higher hydroxide of the chemical element, which is situated in the 4th period, group 5, main subgroup, can be neutralized with sodium hydroxide. 											
	5) T F The number of atoms contained in 6,4 g of sulfur is greater than the number of molecules in 2,24 <i>l</i> (STP) of oxygen.											
2	Molecular cuisine, one of the most exotic trends in modern culinary art, focuses on creating unique combinations of flavors, tastes, and textures by applying specific technologies of food preparation: dehydration, foaming, and processing at low temperatures. The following substances may be used to carry out these processes: calcium chloride, nitrogen, ammonia, carbon (IV) oxide. For each proposed characteristic select a substance from those used in molecular gastronomy and write its chemical formula in the reserved space.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
	Caracteristic of the substance Chemical formula	5 5 6										
	1 non-polar covalent bonds are formed between the particles of the substance 2 the substance contains particles with the electronic	7 7										
	configuration of an inert gas 3 a triple bond is formed between the particles of the substance	-										
	4 hydrogen bonds are formed between molecules of a substance											
	5 it is a gas heavier than air	-										
	$\frac{6}{}$ at the interaction with water, form a solution with pH > 7											
	7 it is one of the products of the limestone decomposition reaction											
3	6 at the interaction with water, form a solution with pH > 7 7 it is one of the products of the limestone decomposition											

Indicate in which direction the chemical equili	% lower content of pollutants in the exhaust pound can be carried out according to the ${ m CH_3-O-CH_3(g)+CO_2(g)}+{ m Q}$ brium will shift in this reagent system under	0 1 2 3
the action of the following factors using the ex <i>shift</i> ,: a) increasing the hydrogen concentration	pressions on the right, on the left, it will not	5
b) catalyst change		
c) increasing the temperature		
d) decreasing pressure		
e) removing carbon (IV) oxide from the reaction medium		
design, alloys with an aluminum content of 5-cornaments, the realization of which requires ince Solve the problem. For the chemical analysis of a silver and alum sulfuric acid solution with a density of 1 g/ml	ereased plasticity - not less than 10%. ninum alloy with a mass of 45 g, 588 ml of	
consumed. a) Calculate the mass fraction of silver in this all b) Give arguments if the alloy with this compo	lloy.	5 6 7
consumed. a) Calculate the mass fraction of silver in this all	lloy.	5 6 7 8 9 10
consumed. a) Calculate the mass fraction of silver in this all b) Give arguments if the alloy with this composit with a detailed floral design. It is given:	lloy. osition will be suitable for making a bracelet	5 6 7 8 9
consumed. a) Calculate the mass fraction of silver in this all b) Give arguments if the alloy with this composit with a detailed floral design. It is given:	lloy. osition will be suitable for making a bracelet Solution:	5 6 7 8 9 10 11
consumed. a) Calculate the mass fraction of silver in this all b) Give arguments if the alloy with this composit with a detailed floral design. It is given:	lloy. osition will be suitable for making a bracelet Solution:	5 6 7 8 9 10 11
consumed. a) Calculate the mass fraction of silver in this all b) Give arguments if the alloy with this composit with a detailed floral design. It is given:	lloy. osition will be suitable for making a bracelet Solution:	5 6 7 8 9 10 11
consumed. a) Calculate the mass fraction of silver in this all b) Give arguments if the alloy with this composit with a detailed floral design. It is given:	lloy. osition will be suitable for making a bracelet Solution:	5 6 7 8 9 10 11
consumed. a) Calculate the mass fraction of silver in this all b) Give arguments if the alloy with this composit with a detailed floral design. It is given:	lloy. osition will be suitable for making a bracelet Solution:	5 6 7 8 9 10 11
consumed. a) Calculate the mass fraction of silver in this all b) Give arguments if the alloy with this composit with a detailed floral design. It is given:	lloy. osition will be suitable for making a bracelet Solution:	5 6 7 8 9 10 11
consumed. a) Calculate the mass fraction of silver in this all b) Give arguments if the alloy with this composit with a detailed floral design. It is given:	lloy. osition will be suitable for making a bracelet Solution:	5 6 7 8 9 10 11

6	For each type of reactioused as reagent or react	arbon (IV) oxide, ammonium chlon indicated, select from the proion product. Write the correspo	posed line a substance that can be	L 0 1 2	L 0 1 2 3								
	a) combination reaction:	→		5	5								
	b) substitution reaction:	→		7	6 7 8								
	c) decomposition reaction:	→			0								
	d) exchange reaction:	→											
7	Natural masks have a be	eneficial effect on damaged hair	:: they moisturize it, strengthen it,										
			•	11 - 1	L								
	_			$\frac{0}{1}$	$\frac{0}{1}$								
	Complete the blank spac	es from the proposed statements:		2	2								
	<i>I. Ethanoic acid</i> belongs	to the homologous series with th	ne general formula;		3 4								
	is used in the food industry as												
	II. Glycerol has the molecular formula ; can be identified with												
	can be identified with		· · · · · · · · · · · · · · · · · · ·	7	7								
	III. 2-Aminopropanoic	hydroxide, carbon (IV) oxide, ammonium chloride, hydrogen, aluminum oxide. pe of reaction indicated, select from the proposed line a substance that can be gent or reaction product. Write the corresponding reaction equations provided lected substance is <u>used only once.</u> ion ion isition issistion issi											
		and with	; the structural										
	semi-developed formula	of a homologue of this compoun	d is										
8	of these substances has a	branched chain and contains tw	oπ bonds.	L									
	Complete the blank space			1	1								
	Structural semi-	0		3	3								
	developed formula		CH ₃ OH		5								
	Name according to systematic nomenclature			6	6 7								
	Structural semi- developed formula	<u>a chain isomer</u>	a position isomer										
	Name according to systematic nomenclature												

	There are given the substances:		
	bromoethan, propen, glucose, methyl ethanoate, butanoic acid.	L	I
	Write the reactions equations according to the proposed schemes, using in each case one of	0	C
l	the substances in the given line as <u>reagent</u> or <u>reaction product</u> . For the organic substances	1	1
	use the structural semi-developed formulas.	2	2
	1) + Na →	3	3
	-,	4	4
		5	5
	2) + $Br_2 \rightarrow$	6	6
		7	7
	3) + Ag	8	8
l			
	4) + HOH		
	7		
ļ			
	"Smart packaging" contains active substances that, acting on the atmosphere indoors, create		
	an ideal environment for maintaining the quality of the products. According to the	L	I
	conducted research, the incorporation of 0,1 moles of active substance in the contents of a	0	(
	package with a volume of 1 <i>l</i> allows to increase the shelf life of the packaged product by at		-
	least 5 times.	2	4
	Solve the problem. a) Determine the molecular formula of saturated monoalcohol, used as	3	(
	an active substance in the production of packaging for confectionery products, if at the	4	4
	interaction of 18,4 g of this alcohol with excess metallic sodium, a gas with a volume of	5	4
	4,48 <i>l</i> (STP) was eliminated.	6	(
	b) Give arguments, if the use of the 1 <i>l</i> volume package, which contains 4,6 g of this	7	
	alcohol, will allow extending the shelf life of the cookies from 72 hours to 15 days. It is given: Solution:	8	8
	n is given. Solution.	9	Š
		10	1
		11	_1
		12	1

11	The	orchid is considered "a	a queen of ornamental p	plants" due to its wide spectrum of colors,								
				ering, it is recommended to maintain an	L	L						
				extract in the case of a more acidic soil or	0	0						
			ubstrate in the case of a		1	1						
	Solv	e the problem.			2	2						
	To p	repare a solution, 50 r	nl of hydrochloric acid	solution with a molar acid concentration	3	3						
	of 0,	001 mol/l was added to	o 4950 ml of water.		4	4						
	a) Ca	alculate the pH of the f	inal solution.		5	5						
	b) G	ive arguments about v	which of the recommen	ded remedies you will use to stimulate	6	6						
			owing in soil with the sa	<u>-</u>	7	7						
	It is	given:		Solution:	8	8						
						9						
	• • • • • • •											
	• • • • • • •											
			• • • • • • • • • • • • • • • • • • • •									
			• • • • • • • • • • • • • • • • • • • •									
			• • • • • • • • • • • • • • • • • • • •									
	• • • • • • •		• • • • • • • • • • • • • • • • • • • •									
		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •									
	Ansv	ver: a)	; b)									
12	In a	practical work, solution	ns of the following subs	stances were proposed for identification:								
		iron (III) chloride	ammonium sulphate sii	lver nitrate, potassium carbonate.	L	L						
	A at		•	<u> </u>	0	0						
		_	•	proposed substances, using only two	1	1						
				, KSCN, NaOH, Ba(NO ₃) ₂ .	2	2						
			ces in the table presen	ting the results of the chemical analysis	3	3						
	perto	ormed.			4	4						
		Formula of the	Formula of the	Analytic signal	5	5						
	1	identified salt	identification reagent		6	6						
	1.				7	7						
	2.				8	8						
	2			1	9	9						
	3.			brown precipitate, soluble in acids	10	10						
	II. W	rite an equation of ide	entification reaction in n	nolecular form, completed ionic and	11	11						
		_	ce with the data from the	_	12	12						
					13	13						
				(ME)	13	13						
				(CIE)								
	• • • • • • •			, ,								
				(<i>RIE</i>)								

SISTEMUL PERIODIC AL ELEMENTELOR CHIMICE

	I	П	ш	IV	v	VI	VII		VIII
	1 Hidrogen							2 Heliu	
1	H 1,0079							He 4,0026	
2	3 Litiu	4 Beriliu	5 Bor	6 Carbon	7 Azot	8 Oxigen	9 Fluor	10 Neon	
2	Li 6,941	Be 9,01218	B 10,81	C 12,011	N 14,0067	O 15,9994	F 18,9984	Ne 20,179	
3	11 Sodiu	12 Magneziu	13 Aluminiu	14 Siliciu	15 Fosfor	16 Sulf	17 Clor	18 Argon	
3	Na 22,98977	Mg 24,305	Al 26,98154	Si 28,0855	P 30,97376	S 32,06	Cl 35,453	Ar 39,948	
	19 Potasiu	20 Calciu	21 Scandiu	22 Titan	23 Vanadiu	24 Crom	25 Mangan	26 Fier 2	
4	K 39,0983	Ca 40,08	44,9559 Sc	47,88 Ti	50,9415 V	51,996 Cr	54,938 Mn		8,9332 Co 58,69 Ni
4	29 Cupru	30 Zinc	31 Galiu	32 Germaniu	33 Arsen	34 Seleniu	35 Brom	36 Kripton	
	63,546 Cu	65,38 Zn	Ga 69,72	Ge 72,59	As 74,9216	Se 78,96	Br 79,904	Kr 83,80	
	37 Rubidiu	38 Stronţiu	39 Ytriu	40 Zirconiu	41 Niobiu	42 Molibden	43 Tehneţiu	44 Ruteniu 45	
5	Rb 85,4678	Sr 87,62	88,9059 Y	91,22 Zr	92,9064 Nb	95,94 Mo	[98] Tc		2,9055 Rh 106,42 Pd
)	47 Argint	48 Cadmiu	49 Indiu	50 Staniu	51 Stibiu	52 Telur	53 Iod	54 Xenon	
	107,868 Ag	112,41 Cd	In 114,82	Sn 118,69	Sb 121,75	Te 127,60	I 126,9045	Xe 131,29	
	55 Ceziu	56 Bariu	57* Lantan	72 Hafniu	73 Tantal	74 Volfram	75 Reniu	76 Osmiu 7	
6	Cs 132,9054	Ba 137,33	138,9055 La	178,49 Hf	180,948 Ta	183,85 W	186,207 Re		92,22 Ir 195,08 Pt
0	79 Aur	80 Mercur	81 Taliu	82 Plumb	83 Bismut	84 Poloniu	85 Astatiniu	86 Radon	
	196,9665 Au	200,59 Hg	Tl 204,383	Pb 207,2	Bi 208,9804	Po [209]	At [210]	Rn [222]	•
	87	88	89**	104	105	106	107		09 110 Meitnerium Darmstadtium
7	Franciu	Radiu	Actiniu	Rutherfordium	Dubnium	Seaborgium	Bohrium		_
	Fr [223]	Ra 226,0254	227,0278 Ac	[261] Rf	[262] Db	[263] Sg	[262] Bh	[267,13] Hs [2	268,14] Mt [281] Ds
_					*Lantanide				
58 C			Pm 62 Sm			Г b 66 D y		8 Er 69 Tı	
Ceriu 140,12		Neodim Prome 144,24 [145		1	loliniu Terbiu 57,25 158,925			Erbiu Tuliu 167,26 168,934	,
1-10,12	110,2077	1,27 [170	.1 150,50		**Actinide	. 102,50	101,2301	107,20 100,754	175,01
_					1 Ictimac				

Cm

Curiu

[247]

Am 96

Americiu

[243]

97 **Bk**

Berkeliu

[247]

Cf

californiu

[251]

99

Es

Einsteiniu

[252]

98

100 **Fm**

Fermiu

[257]

101

[258]

102

Nobeliu

[255]

Md

Mendeleviu

103 Lr

Lawrenciu

[260]

 \mathbf{U}

93

Np

Neptuniu 237,0482 **Pu** 95

Plutoniu

[244]

92

Uraniu

238,0389

Th

Protactiniu

231,0359

Toriu

232,0381

	SOLUBILITATEA ACIZILOR, BAZELOR, SĂRURILOR ÎN APĂ																
	H ⁺	NH_4^+	Li ⁺	Na ⁺	K ⁺	Ba ²⁺	Ca ²⁺	Mg^{2+}	Al ³⁺	Cr ³⁺	Zn^{2+}	Mn ²⁺	Fe ²⁺	Fe ³⁺	Pb ²⁺	Cu ²⁺	Ag ⁺
OH -		S↑	S	S	S	S	P	I	I	I	I	I	I	I	I	I	-
F -	S	S	P	S	S	P	I	I	P	I	S	S	I	I	I	S	S
Cl -	S	S	S	S	S	S	S	S	S	S	S	S	S	S	P	S	I
Br -	S	S	S	S	S	S	S	S	S	S	S	S	S	S	P	S	I
Ι-	S	S	S	S	S	S	S	S	S	S	S	S	S	-	I	-	I
S ²⁻	S↑	S	S	S	S	S	S	S	ı	-	I	I	I	-	I	I	I
SO ₃ ²⁻	S↑	S	S	S	S	I	I	I	-	-	I	-	I	-	I	I	I
SO ₄ ²⁻	S	S	S	S	S	I	P	S	S	S	S	S	S	S	I	S	P
CO ₃ ² -	S↑	S	S	S	S	I	I	I	-	-	I	I	I	-	I	-	I
SiO ₃ ² -	I	-	S	S	S	I	I	I	-	-	I	I	I	-	I	-	-
NO ₃ -	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
PO ₄ ³⁻	S	S	I	S	S	I	I	I	I	I	I	I	I	I	I	I	I
CH ₃ COO-	S	S	S	S	S	S	S	S	S	-	S	S	S	-	S	S	S

Notă: S – substanță solubilă, I – insolubilă, P – puțin solubilă; «-» substanța nu există sau se descompune în apă; ↑ - substanța se degajă sub formă de gaz sau se descompune cu degajare de gaz

SERIA ELECTRONEGATIVITĂŢII

													-						
F	0	N	Cl	Br	I	S	C	Se	P	H	As	В	Si	Al	Mg	Ca	Li	Na	K
4,0	3,5	3,07	3,0	2,8	2,5	2,5	2,5	2,4	2,1	2,1	2,0	2,0	1,8	1,5	1,2	1,04	1,0	0,9	0,8

SERIA TENSIUNII METALELOR

Li K Ba Ca Na Mg Al Mn Zn Cr Fe Ni Sn Pb (H) Cu Hg Ag Pt Au