		Items	Sc	ore
2	1) T F The second of the s	chemical element situated in the periodic table in the 4th period, group 7, ondary subgroup, is of " d "- element. chemical element with the electronic configuration $1s^22s^22p^63s^23p^63d^{10}4s^24p^3$ ms the higher oxide with the composition E_2O_3 . most active metal of the 4th period is a strongest reducing agent than the mical element with an atomic number 37. The solution of the higher hydroxide of the element which contains 16 protons, the nucleus the phenolphthalein is colored in raspberry. The solution of argon with a volume of $11,2 l$ (STP) is equal with the mass of 10^{23} calcium atoms.	L 0 1 2 3 4 5	L 0 1 2 3 4 5
2	chemical companies the proposed of mineral waters Chemical element Nitrogen Carbon Bromine	a) the type of chemical bond in the simple substance b) the name of the compound between whose molecules form hydrogen bonds and a specific field of use of this compound a) the type of crystalline lattice in the simple substance b) the chemical formula of a compound that contains only the σ bond c) the chemical formula of a compound used in the manufacture of glass a) the type of chemical bond in the volatile compound with hydrogen b) the chemical formula of a compound used in the manufacture of glass a) the type of chemical bond in the volatile compound with hydrogen b) the chemical formula of a compound with different type of chemical bond and the electronic configuration of the one of particle that is included in the composition of this compound	L 0 1 2 3 4 5 6 7 8 9	L 0 1 2 3 4 5 6 7 8 9
3	particularly tessulfide, which Hg Establish for reductant, the	mics keep the heat for a long time, giving the products a special, unique taste, a. The characteristic red color of this ceramic is due to the addition of mercury can be identified to the following scheme: $S + HCl + HNO_3 \rightarrow S + HgCl_2 + NO + H_2O$ this process: the degrees of oxidation of all elements, the oxidant and the oxidation and the reducing processes; determine coefficients by electronic d and balance the equation reaction.	L 0 1 2 3 4 5 6 7	L 0 1 2 3 4 5 6 7

acverophicit of chicient technologies for captaining	ducing greenhouse gas emissions is the gand regenerating methane produced by	L	L
natural ecosystems.		0	0
For each characteristic in column B , select from the	he column A the corresponding reagent	1	1
system and indicate that figure in the reserved space.		2	2
A	В	3	3
	a) presents a catalytic system	4	4
	a) presents a catalytic system		
1) $H_2O_{(g)} + CH_{4(g)} \rightleftarrows CO_{(g)} + 3H_{2(g)} - Q$	b) increasing pressure shifts the		
[ZnO]	chemical equilibrium towards		
2) $2CH_{4(g)} + O_{2(g)} \neq 2CH_3OH_{(g)} + Q$	final products		
, - (6)	c) decreasing the temperature shifts		
	chemical equilibrium to the left		
3) $4NO_{(g)} + CH_{4(g)} \rightleftarrows 2N_{2(g)} + CO_{2(g)} + 2H_2O_{(g)} + Q$	d) removing the water vapor		
(g) (1/3(g) (21/2(g) (21	increases the yield of the direct		
	reaction		
The mineral powder has a light and fine texture		-	-
chromatic range of this cosmetic product is determin	- , , , ,	L	L
as a pigment: in powder for light skin – up to 2%, an	•	0	0
Solve the problem. The precipitate, obtained at		_1_	1_
iron (III) nitrate solution with the mass part of Fe(2	2
solution, was subjected to the decomposition reaction		3	3
a) Calculate the mass of iron (III) oxide obtained fro		4	4
b) Give arguments by calculation, if it is correct to		5	5
powder boxes when packing 2 kg of mineral powde	r containing such an amount of iron (III)	6	6
oxide.		7	7
It is given:	Solution:	8	8
		9	9
		10	10
		11	11
		10	
		12	12
		12	12
		12	12
		12	12
		12	12
		12	12
		[12]	122
		[12]	12
		[12]	12
		12	12
		12	12
		12	12
		12	12
		12	122
		12	122
		12	122
		12	12
		12	12
		12	12
		12	12
		12	12

				ı	1
6		ninum sulfate sprays are recommended rence of severe allergies.	for insect bites to relieve pain and prevent the	L	L
		C	of aluminum sulfate according to the type of	0	0
	rea	action proposed:	5 71	1	1
	,	bstitution		3	3
		action		4	4
		change action		5	5
			actorize the chemical properties of sulfete	6	6
		<u> </u>	acterize the chemical properties of sulfate s from the indicated classes of compounds:	7 8	7 8
		, 2	1		6
	a) a b	base			
	b) a s	salt			
7			the structural semi-developed formulas of the		
	corre	sponding organic substances, and in co	lumn II complete the sentences corresponding to	L	L
	these	substances.		0	0
	1) It	is a monosaccharide:	II 1) A physical property of it:	2	2
	1) 10	is a monosaccinario.	1) 11 physical property of its	3	3
				4	4
	2) It	contains the same number of carbon at	oms 2) Structural semi-developed formula	5	5
	ĺ í	propane and has amphoteric properties		7	7
				8	8
	2) 14	is read in means for trains times.	2) Polongs to the homologous series		
	3) II	is used in manufacturing tires:	3) Belongs to the homologous series with the general formula:		
	4) H	ydroxyl compound obtained from the	4) Chemical formula of the		
		ydrolysis of fats:	identification reagent:		
8	I. Co	mplete the blank spaces in the table:			
		Structural semi-developed formula	Name of substance according to systematic	L	L
		of substance	nomenclature	0	0
	1	CH₃		2	2
	1	CH ₃ – CH = CH – CH – CH ₃		3	3
		CH3-CH-CH-CH-CH3		4	4
	2		3,3-dimethylbutan-1-ol	5	5
			s,s university section 1 or		
		ircle the letter T , if the statement is true	and the letter F if it is false		
	a) T				
	b) T	e	•		
	c) T		1, an isomer of substance 2 is obtained.		
	d) T	F Both substances discolor bromine	water.		

The E-200 additive is a natural preservative that ensures the full preservation of the organoleptic properties of chips and fruit snacks. According to food safety standards, the optimal content of the E-200 additive in products of this type is 0,5 g/kg. Solve the problem. a) Determine the molecular formula of the additive E-200, if when burning a sample of this compound with a mass of 22,4 g, 26,88 l (STP) of carbon (IV) oxide, and 14,4 g of water were obtained. The vapor density of this substance after nitrogen is equal to 4. b) Give arguments by calculations, if the food safety standards will be respected by using 0,1 moles of this additive in the production of 20 kg of fruit snacks. It is given: Solution: Solution: 1	There are given the substances: propan-1-ol, ethine, butanoic acid, methylbenzene, butane. Write the reactions equations respecting the condition that in each case the reagent belongs to the indicated class of organic compounds and the reaction product is one of the substances in the proposed row. For the organic substances use the structural semi-developed formulas. a) of alkane b) of aldehyde c) of ester d) of halogen derivative	L 0 1 2 3 4 5 6 7 8	L 0 1 2 3 4 5 6 7 8
	The E-200 additive is a natural preservative that ensures the full preservation of the organoleptic properties of chips and fruit snacks. According to food safety standards, the optimal content of the E-200 additive in products of this type is 0,5 g/kg. Solve the problem. a) Determine the molecular formula of the additive E-200, if when burning a sample of this compound with a mass of 22,4 g, 26,88 <i>l</i> (STP) of carbon (IV) oxide, and 14,4 g of water were obtained. The vapor density of this substance <i>after nitrogen</i> is equal to 4. b) Give arguments by calculations, if the food safety standards will be respected by using 0,1 moles of this additive in the production of 20 kg of fruit snacks.	0 1 2 3 4 5 6 7 8 9 10 11	L 0 1 2 3 4 5 6 7 8 9 10 11 12 13

11			ental monitoring sensor systems because		
			tile filter AC-4 at a pH = 4.5 has a brown	L	L
	color, changing to purple in	a more acidic medium o	or to red in a less acidic medium.	0	0
			ation with a volume of 200 l, 14 ml of	1	1
	sulfuric acid solution with	a density of 1,4 g/ml a	and a mass fraction of 50% H ₂ SO ₄ were	2	2
	used.			3	3
	a) Calculate the pH of the p			4	4
		AC-4 textile filter will ha	ave in the process of filtering the prepared	5	5
	solution.			6	6
	It is given:		Solution:	7	7
		• • • • • • • • • • • • • • • • • • • •		8	8
				9	9
				10	10
		• • • • • • • • • • • • • • • • • • • •			
		• • • • • • • • • • • • • • • • • • • •			
		• • • • • • • • • • • • • • • • • • • •			
	Answar: a)	· b)			
12	Solutions to the following s				
14		sulfate, hydrochloric aci	d notassium hydroxide	Ţ	ī
		lead (II) nitrate, ammoni	- · ·	$\begin{bmatrix} \mathbf{L} \\ 0 \end{bmatrix}$	0
		' '	proposed line, a student performed two	1	1
	<u> </u>		t (from the same line), obtaining different	2	2
	analytical signals.		" (Irom the same me), soluming wijjerem	3	3
		es in the table according	to the requirements indicated.	4	4
	Formula of the identified	Formula of the	Analytic signal	5	5
	substance	identification reagent	, 0	6	6
		, o		7	7
	1)			8	8
	1)			9	9
	3)			10	10
	2)			10	10
	=		n molecular form, completed ionic and		
	reduced ionic, in accordanc	e with the data from the	table above.		
			(ME)		
			,		
			(CIE)		
			(RIE)		

SISTEMUL PERIODIC AL ELEMENTELOR CHIMICE

	I	П	ш	IV	v	VI	VII		VIII
	1 Hidrogen							2 Heliu	
1	H 1,0079							He 4,0026	
2	3 Litiu	4 Beriliu	5 Bor	6 Carbon	7 Azot	8 Oxigen	9 Fluor	10 Neon	
2	Li 6,941	Be 9,01218	B 10,81	C 12,011	N 14,0067	O 15,9994	F 18,9984	Ne 20,179	
3	11 Sodiu	12 Magneziu	13 Aluminiu	14 Siliciu	15 Fosfor	16 Sulf	17 Clor	18 Argon	
3	Na 22,98977	Mg 24,305	Al 26,98154	Si 28,0855	P 30,97376	S 32,06	Cl 35,453	Ar 39,948	
	19 Potasiu	20 Calciu	21 Scandiu	22 Titan	23 Vanadiu	24 Crom	25 Mangan	26 Fier 2	
4	K 39,0983	Ca 40,08	44,9559 Sc	47,88 Ti	50,9415 V	51,996 Cr	54,938 Mn		8,9332 Co 58,69 Ni
4	29 Cupru	30 Zinc	31 Galiu	32 Germaniu	33 Arsen	34 Seleniu	35 Brom	36 Kripton	
	63,546 Cu	65,38 Zn	Ga 69,72	Ge 72,59	As 74,9216	Se 78,96	Br 79,904	Kr 83,80	
	37 Rubidiu	38 Stronţiu	39 Ytriu	40 Zirconiu	41 Niobiu	42 Molibden	43 Tehneţiu	44 Ruteniu 45	
5	Rb 85,4678	Sr 87,62	88,9059 Y	91,22 Zr	92,9064 Nb	95,94 Mo	[98] Tc		2,9055 Rh 106,42 Pd
)	47 Argint	48 Cadmiu	49 Indiu	50 Staniu	51 Stibiu	52 Telur	53 Iod	54 Xenon	
	107,868 Ag	112,41 Cd	In 114,82	Sn 118,69	Sb 121,75	Te 127,60	I 126,9045	Xe 131,29	
	55 Ceziu	56 Bariu	57* Lantan	72 Hafniu	73 Tantal	74 Volfram	75 Reniu	76 Osmiu 7	
6	Cs 132,9054	Ba 137,33	138,9055 La	178,49 Hf	180,948 Ta	183,85 W	186,207 Re		92,22 Ir 195,08 Pt
0	79 Aur	80 Mercur	81 Taliu	82 Plumb	83 Bismut	84 Poloniu	85 Astatiniu	86 Radon	
	196,9665 Au	200,59 Hg	Tl 204,383	Pb 207,2	Bi 208,9804	Po [209]	At [210]	Rn [222]	•
	87	88	89**	104	105	106	107		09 110 Meitnerium Darmstadtium
7	Franciu	Radiu	Actiniu	Rutherfordium	Dubnium	Seaborgium	Bohrium		_
	Fr [223]	Ra 226,0254	227,0278 Ac	[261] Rf	[262] Db	[263] Sg	[262] Bh	[267,13] Hs [2	268,14] Mt [281] Ds
_					*Lantanide				
58 C			Pm 62 Sm			Г b 66 D y		8 Er 69 Tı	
Ceriu 140,12		Neodim Prome 144,24 [145		1	loliniu Terbiu 57,25 158,925			Erbiu Tuliu 167,26 168,934	,
1-10,12	110,2077	1,27 [170	.1 150,50		**Actinide	. 102,50	101,2301	107,20 100,754	175,01
_					1 Icumac				

Cm

Curiu

[247]

Am 96

Americiu

[243]

97 **Bk**

Berkeliu

[247]

Cf

californiu

[251]

99

Es

Einsteiniu

[252]

98

100 **Fm**

Fermiu

[257]

101

[258]

102

Nobeliu

[255]

Md

Mendeleviu

103 Lr

Lawrenciu

[260]

 \mathbf{U}

93

Np

Neptuniu 237,0482 **Pu** 95

Plutoniu

[244]

92

Uraniu

238,0389

Th

Protactiniu

231,0359

Toriu

232,0381

			S	OLU	BIL	ITAT	EA A	CIZII	OR,	BAZI	ELOR	, SĂR	URIL	OR Î	N AP	Ă	
	H ⁺	NH ₄ ⁺	Li ⁺	Na ⁺	K ⁺	Ba ²⁺	Ca ²⁺	Mg^{2+}	Al ³⁺	Cr ³⁺	Zn^{2+}	Mn ²⁺	Fe ²⁺	Fe ³⁺	Pb ²⁺	Cu ²⁺	Ag ⁺
OH -		S↑	S	S	S	S	P	I	I	I	I	I	I	I	I	I	-
F -	S	S	P	S	S	P	I	I	P	I	S	S	I	I	I	S	S
Cl -	S	S	S	S	S	S	S	S	S	S	S	S	S	S	P	S	I
Br -	S	S	S	S	S	S	S	S	S	S	S	S	S	S	P	S	I
Ι-	S	S	S	S	S	S	S	S	S	S	S	S	S	-	I	-	I
S ²⁻	S↑	S	S	S	S	S	S	S	ı	-	I	I	I	-	I	I	I
SO ₃ ²⁻	S↑	S	S	S	S	I	I	I	-	-	I	-	I	-	I	I	I
SO ₄ ²⁻	S	S	S	S	S	I	P	S	S	S	S	S	S	S	I	S	P
CO ₃ ² -	S↑	S	S	S	S	I	I	I	-	-	I	I	I	-	I	-	I
SiO ₃ ² -	I	-	S	S	S	I	I	I	-	-	I	I	I	-	I	-	-
NO ₃ -	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
PO ₄ ³⁻	S	S	I	S	S	I	I	I	I	I	I	I	I	I	I	I	I
CH ₃ COO-	S	S	S	S	S	S	S	S	S	-	S	S	S	-	S	S	S

Notă: S – substanță solubilă, I – insolubilă, P – puțin solubilă; «-» substanța nu există sau se descompune în apă; ↑ - substanța se degajă sub formă de gaz sau se descompune cu degajare de gaz

SERIA ELECTRONEGATIVITĂŢII

													-						
F	0	N	Cl	Br	I	S	C	Se	P	H	As	В	Si	Al	Mg	Ca	Li	Na	K
4,0	3,5	3,07	3,0	2,8	2,5	2,5	2,5	2,4	2,1	2,1	2,0	2,0	1,8	1,5	1,2	1,04	1,0	0,9	0,8

SERIA TENSIUNII METALELOR

Li K Ba Ca Na Mg Al Mn Zn Cr Fe Ni Sn Pb (H) Cu Hg Ag Pt Au